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Abstract 

A systematic procedure for deriving the equations of 
the integrated reflected X-ray energy is presented and 
conditions for the validity of the equations are 
formulated. Existing formulae are critically examined. 

Introduction 

The concept of integrated reflected X-ray energy dates 
back to the early days of X-ray crystallography, and 
Lorentz factors have been calculated ever since. 
However, on going through the literature, the 
impression prevails that derivations of these factors for 
various experimental methods require different pro- 
cedures, and that the reason for selecting a certain pro- 
cedure in preference to others - equally feasible ones - 
is not always sufficiently justified; in particular, one 
fails to find definite guidelines on what to do when con- 
fronted with a new experimental situation. 

This article attempts to present a systematic way of 
deriving the expressions for integrated reflected energies 
as measured by the different experimental techniques. 
Specifically this will be outlined for X-ray reflections 
from imperfect three-dimensional crystals, i.e. reflec- 
tions belonging to the regime of the kinematic theory; 
the underlying reasoning is, however, quite generally 
applicable. 

General considerations 

The starting point is the equation relating the intensity I 
scattered by the crystal in the direction s~, to the 
intensity I 0 of the primary monochromatic beam, 
incident in the direction s o (s~ and s o are unit vectors). 
Limiting the discussion to small, non-absorbing crystal- 
lites, or aggregates of small coherently reflecting 
domains, Laue (1960, chapter 14) derives the relation: 

I(sl) = I e F z G z, 

Ie=je lo(so) / r  2, je = P × 7.94 × 10-3° m 2, (1) 

r is the distance from the crystal to the observation 

0567-7394/79/040634-08501.00 

point. The remaining symbols have their conventional 
meaning (see list of symbols). 

This equation is valid in the kinematic approxi- 
mation, i.e. under the assumption of negligible secon- 
dary and higher-order scattering processes within the 
scattering material. Hence it is applicable to situations 
where the total scattered power is weak compared with 
the power contained in the primary exciting beam. 

Furthermore, (1) holds for a strictly monochromatic 
and perfectly parallel incident beam. For describing 
experimental conditions, this restriction must be 
relaxed. This is accomplished by introducing first the 
spectral intensity I ' ,  customarily defined either with 
respect to the wavelength 2 or with respect to the wave- 
number k (= 1/2) as: 

dI  dI  
I ' (4)=~-~ or I ' (k)  dk (2) 

and by replacing the primary intensity I o by the angular 
density of the spectral intensity i o 

dI '(2) dI ' (k)  
i 0 ( 2 ) - - - ,  i o ( k ) - - - ,  (3) 

dOo d-Q 0 

where .(2 o refers to the (solid) angular opening of the 
primary beam. Equation (1) is thus written as 

I = f f Je io(k) r-z Fz Gz d~o dk. (4) 

The reflected power through an element of area do 
about the point of observation is dHr; 

d H  r = I d a  

and the energy reflected during time dt is dEr; 

dE r = I d a  dt. 

Denoting the solid angle subtended by da, as seen from 
the crystal, by d.O~ the reflected energy is thus 

E r : f i f f Je io(k) F2 G2 d.O0 d.Ql dk dt. (5) 

In general the reflected energy is due to different 
crystallites in various orientations (powder, mosaic 
crystal). Equation (5) for E r must then be multiplied by 
the number of crystallites in or near the reflecting 
orientation. This is expressed by a distribution function 
U(bu)dF, giving the number of crystallites oriented so 
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that their reciprocal lattice vector bH, pertaining to the 
reflecting plane, lies within the solid angle dF, thus 

E,. = J f (.( f Je io(k) F2 62 U(bn) d/"d.Q0 dI2~ dk dt. (6) 

There are eight integration variables in (6), their 
values are determined by the experimental conditions: 
the two solid angles £20 and .t2~ which are the angular 
divergence of the primary beam and the angular 
opening of the detecting device, respectively (each solid 
angle is described by two planar angles in mutually per- 
pendicular planes), the two planar angles describing the 
directions b n of the reflecting crystallites, the wave- 
number k and the time t, which must be introduced to 
permit consideration of non-stationary situations. 

Let these variables be denoted by x~, x2, ..., x 8 
regardless of order. The factors of the integrand of (6) 
are functions of at least some of the x r Furthermore, 
each x i varies over an interval which is determined by 
the experimental set up. The explicit relations will be 
discussed later. 

The effect of crystal diffraction is described by the 
lattice factor G 2. This factor can be expressed in terms 
of three parameters Yt, II2 and Y3 which are related to 
the integration variables x i through the diffraction 
vector L :  

L = ( s  I - -  s0)k , (7) 

Y i = L . a  izr, i =  1,2,3, (7a) 

where a i are the three elementary lattice translations. 
Finally, 

G 2 ]-2-[ sine Ni Yi (8) 
l=xl sin2Yi 

(Laue, 1960, chapter 14), where N i is the number of 
elementary cells in the directions of a i in the reflecting 
crystallite. The numbers N i are usually quite large 
(> 103), yet should not exceed the limits set by the 
validity of the kinematic approximation. 

The integration (6) should be carried out so that G 2 
is integrated over the intervals 

7~(Hi--½)'( Yi< re(Hi+ ½) ( i=  1,2,3), (9) 

where H1, H 2 and n 3 are integers (the index of the 
reflection) (Laue, 1960, chapter 17). Such an interval 
contains one, and only one 'principal' maximum of G 2. 

However, all practically non-vanishing values of G 2 
about any principal maximum are bunched within a 
region much smaller than that defined by (9). This 
region is bounded by three intervals A' Y~ (i -- 1, 2, 3) 
defined as 

H i I t -  fli/2 < Yi < HI It + ill~2, (9a) 

where fli equals a few times 2z~/N i. 
Hence the integral of G 2 with respect to Yi is 

practically a constant independent of the limits of inte- 
gration, provided that each Yi varies at least over the 

minimum interval A' Yi defined by (9a) [and does not 
exceed the interval defined by (9)]: 

.i f f G 2 dY l d Y  2 d Y  3 = It3N l M 2 N 3 = rc3V/Vo, (10) 
at, 

provided that each A Y i > A 'Yi :  V denotes the 
irradiated crystal volume and V 0 the volume of the 
elementary cell. 

In order to introduce integral (10)into the integration 
of (6), a transformation of variables is effected by 
substituting the parameters Y~, II2 and II3 for three of 
the original eight integration variables; 

E~= J dxa . . . f  dxa f  dY~f  dY2 f  d Y 3 j e i o ( k ) F 2 G  2 U 

a(xl,x2,x3) 
x O(YI'Y2'Y3 ). (11) 

The three substituted variables, denoted here by x~, 
x 2, x 3, but not further specified so far, will henceforth 
be called 'inner variables', whilst the remaining five will 
be referred to as 'outer variables'. 

The essential step in deriving the equations of the 
integrated reflected energy for different experimental 
situations is the proper selection of the appropriate 
inner variables. 

It is proposed now to formulate the general rules 
governing this selection; they are based on the 
following consideration. 

Under certain circumstances it is possible to express 
the reflected energy E r (equation 11) as the product of 
two (or more) integrals, one of the factors being the 
definite integral over G 2 (equation 10); 

E r =  { f d x 4 " . J  dxa[.~ io(k)F 2 UJ]}(Tr 3 V/Vo),  (12) 

where J is the Jacobian 

~(x~,x~,x3) 
J = o( y i ,Y2,Y3 ) • (13t 

If additional functions are used for the calculation of 
Er (such as absorption, thermal correction etc.), they 
will be included as additional factors of the integrand in 
(12). 

The quantity E~ of integral (11) will represent an 
integrated reflected energy if, and only if, the definite 
integral (10) can indeed be factored out of the integral 
for the reflected energy (11), in the manner of (12). 

The inner variables must be chosen so as to allow 
such a separation of the integral (l l). This will be 
possible if the following three criteria are met: 

First, the inner variables must be such as to result in 
a finite and non-vanishing Jacobian, J(equation 13). 

Second, the interval of variation of each inner 
variable must be sufficiently large, so that each 
parameter Yt ranges at least over the minimum range 
defined by (9a), and this for every attainable value of 
every outer variable. 
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Third, no function appearing in the equation of 
reflected energy (6), except the lattice factor G 2, should 
depend significantly on any inner variable within its 
interval of variation. 

If the experimental set up is such that these three 
requirements cannot be met for any choice of three 
inner variables, then the measurement of E r will not 
result in an integrated reflected energy. 

D e t a i l e d  c a l c u l a t i o n s  

A reflection from a plane corresponding to the 
reciprocal vector b H will be considered. The Bragg 
angle for a wavenumber k H (contained in the primary 
spectrum) is denoted by 0 u .  The directions of the 
primary beam range over values s o , which contain at 
least one direction son fulfilling the exact Bragg con- 
dition, at least at a certain time if the crystal rotates, or 
at least for one crystallite if polycrystalline material or 
a mosaic crystal is considered. 

A Cartesian reference system i, j, k is set up as 
follows: i is parallel to b n, while j and k are chosen so 
that so n lies in the ij plane. 

The directions s o and s I pertinent to this reflection 
are expressed in this system by the angles/7 o = O n + tSO o 

and e o, and O 1 = O n + JO, and e , ,  respectively: 

So = ( - s i n  0 n - cos 0 n JOo)i 

+ (cos 0 n - sin 0 n J0o) j + eok, (14) 

sl = (sin 0 n + cos 0 u (50,)i 

+ (cos O n -- sin O n JOl) j + e I k .  

The angular displacements, J0 o etc . ,  are small. The 
elementary translations of the reflecting crystallite a~ 
are represented in the reference system by 

a i = Ctil i + Oti2 j + 0~i3 k.  (15) 

The value of the determinant (t~), composed of the 
elements at j  is V 0. 

If the crystallite is tilted from the exact reflecting 
position by small angular amounts r, v, # about the i, j 
and k axes respectively, this displacement is described 
by the matrix (A) 

(A) = 1 . (16) 

- - T  

Denoting its elements by Ai:, the elementary trans- 
lations of the misoriented crystallite are 

' i + otti2J" + ' k, ( 1 7 )  a~ = ~ i l  fli3 

with 

C~j -~- ~. ~ik Zlkj" 
k 

If the crystal rotates with constant angular velocity 
to about an axis u; 

u = sin V/cos ~ + sin ~, sin ~j  + cos ~'k, (18) 

the elements Alj become time dependent: 

/~ = tot cos ~, + #0, 

v = tot sin ~, sin ~ + v o, (19) 

r = tot sin ~, cos ~ + r 0. 

The vectors a~ are introduced into the equation for the 
reflected energy through the parameters Y~ of (7a), 
which become 

Yl = L. a~ zt. (20) 

Defining the vector L' by 

L~ = ~. L k Aki, (20a) 
k 

where L '  i and L i are the components of L' and L 
respectively, it is immediately seen from (17) and (20) 
that 

Yi = L ' .  ai ~. (20b) 

The explicit expressions for these components are 
obtained from (20a), (16), (17) and (14). With k = k n 
+ Jk, and disregarding higher powers of the small 
quantities: 

L ; =  2kn sin O n + k n c o s O n ( J O  o + JO,) + 2sin  O n J k ,  

L '  2 = k n sin On(JO o - JO~-  2g), (21) 

L '  3 = k n ( e  ~ - e 0 + 2 sin 0 n v). 

On substituting these components in (8), by means of 
(20b), G 2 is expressed as an explicit function of the inte- 
gration variables. These variables are: fi0 o, e 0, ~0 , ,  e l 
lthe angles J00 + O H and e 0 determine the direction of 
the primary ray, the angles JO, + 0 n and e ! that of the 
reflected ray, see (14)1; the angles # and v describing 
the misorientation of the reflecting crystallite, (16); the 
wavenumber Jk (with k = Jk + kH)  and the time t, 
which becomes a non-trivial variable if the crystal 
rotates, and enters calculations through (19). It should 
be noted that (21) and (14) assume that these angular 
variables as well as J k / k  H are small, less than about 0.1 
rad. 

Some of the functions of the first factor of (12) 
may also depend on these variables; the distribution U 
is a function of a and v. However, for a randomly 
oriented powder, U ( a , v )  is constant 

Ur 
= - - M H ,  (22) Up°wder 4n 

where U r is the number of irradiated crystallites and 
M n the multiplicity of the reflecting plane. 
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For a mosaic crystal, U is more or less sharply 
peaked, depending on the mosaic spread o. In this case 
we have 

J f U(/u,v) d/u dv = UT, (22a) 
A/s Av 

provided that A/u, dv > o. For a single crystallite, U is a 
delta type function (tr = 0). 

The primary spectral intensity density is in general a 
function of 00, e 0 and k. For an isotropic X-ray source, 
io(k) is constant for any k, within the angular opening 
of the primary beam AO o and Ae o, and zero otherwise. 
Its k dependence is determined by whether mono- or 
polychromatic radiation is used. 

Each of the eight integration variables ranges over an 
interval of 'attainable' values, i.e. values for which none 
of the functions of the first factor in (12) vanishes. They 
are determined, at least partly, by the experimental 
conditions. 

The remaining functions in the first factor of (12), 
namely F 2, J and Je (which contains the polarization 
factor), will be assumed to be constant within the 
relevant intervals. 

If E r is to represent an integrated energy, the ranges 
of the parameters Yi must exceed the interval A ' Y  i 
defined by (9a) (criterion II). 

The corresponding intervals of the parameters L~ of 
(21) are fl~ and are related to the intervals through (20b) 
and (20a), 

fli = z tY  f f s A . , a r  (23) 

The magnitude of each fl' is of the order I / ( N  i Vd/S). 
For simplicity all three values fl~ will be assumed to be 
equal and denoted by fl'. 

Specific derivations 

A remark regarding notation: in the following dis- 
cussion the pairs of the angular parameters 00-01 and 
e0-e ~ will often be distinguished according to the size of 
their respective intervals of variation. Of the two 
parameters 00 and 01, the one ranging over the larger 
interval will be denoted by 8 t ,  whilst the other will be 
denoted by 0 s. Similarly, e L (es) denotes that of the two 
parameters e 0 and e~ which varies over the larger 
(smaller) interval. 

The equations for the integrated reflected energy for 
specific cases are derived from (12). For each case the 
triplet of inner variables must be selected, the con- 
ditions under which this selection holds be established 
and the appropriate Jacobian be calculated. The 
selection is based on the three criteria formulated above 
for calculating J of (13). The relation 

with 
J = J ' /z t  3 V o, (24) 

j F O ( X I , X 2 , X  3) 

,9(/~'~,/_4,z,9 

will be used, which follows from (20b) and (13). J '  (or 
1/J')  is evaluated from (21) once the inner variables x i 
are selected. 

I. Polychromatic radiation 

This technique employs primary radiation of a wide 
spectral range, so that the wavenumber k fulfils the 
requirement of criterion (II). On the other hand the 
effective interval Ak will usually be so small that the 
primary spectral density io(k ) may be regarded as 
constant within Ak (criterion III) and thus k may be 
selected as an inner variable. 

In the preceding and following equations the spectral 
intensity with respect to wavenumber, and its angular 
density io(k) is used [(2) and (3)1. The angular density 
of the spectral intensity with respect to the wavelength 
i0(2) can be used equally well, by substituting I i0(k ) 
dkl = 1i0(2)22 d21. In the integrated equations the sub- 
stitution is effected by replacing io(k ) by i0(;t),;t 2. 

(A) Single stationary crystal. The crystal is 
assumed to be in reflecting orientation, i.e. 00 = 0~, the 
primary radiation is assumed to contain the appropriate 
wavenumber k u. We may set # = v = 0. 

On inspecting (21) it is immediately seen that the 
Jacobian J '  (24), (or its reciprocal) will be finite - see 
criterion (I) - if the three inner variables are any two of 
the variables k, 0 o and 0~, and either e o or e~. 

Applying now the second criterion, the choice 
becomes unique. In order to ensure the proper interval 
for L] of (21), namely - f l ' / 2  < L~ < +fl ' /2 ,  e L must 
be selected as an inner variable. Furthermore the inter- 
val At  L must exceed the interval At  s by at least f l ' /k  n. 

Similarly, considering the required variation of L[,  it 
is seen that AO L must be selected as the second internal 
variable; again AO L must exceed AO s by at least 
f l ' / k  n sin O n (equation 21). 

The third inner variable is k. The proper interval for 
L' l is assured if Ak exceeds ½ cot (AO o + dOl)k by more 
than if ,  which may certainly be assumed to hold in all 
practical cases. 

The three inner variables are therefore: k, 0 L and e L. 
Hence the Jacobian J '  (equation 24) is evaluated from 
(21): 

1 cq(L'~,L'2,L'3) 
7 = O(k, Ot,et) = 2k2 sin2 on (25) 

and from (12), 

E r =  je io (k )F  2 V(2VE k~tsin 2 OH) -~ AOsAesAt  (26) 

(At  is the duration of the measurement), with the pro- 
visions Act > A t  s + f l ' / k  n and AO t > AO s + f l ' /k  n sin 0 n. 
If one or both of these provisions do not hold, 
some additional considerations are required. If, for 
example, Ae L does not exceed Ae s by f l ' /k  n but is itself 
larger than f l ' /kn,  then Ae s in (26) must be replaced by 
A'e s, which will be intermediate between (Ae L - f l ' /kn)  
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and d e  s. Clearly,  the difference between A t  s and A'e  s 
will be negligible if Ae~ (and therefore, in this case, also 
des )  is considerably larger than f f / k  n. 

Similar considerat ions will apply for the equations 
derived below. 

(B)  S t a t i o n a r y  mosa ic  crystal .  The orientation of  
the crystallites is described by the distribution function 
U(g,v), (22a), which decreases to zero outside the 
interval IAgl > 0 / 2  and IAvl >0 /2 .  As  o m a y  be com- 
parable  with i f / k ,  neither g nor v can serve as an inner 
variable (criterion III). The inner variables are thus the 
same as for the case of  the s ta t ionary single crystal ,  
namely  k, 0L and eL, provided, however,  that  AOL and 
A t  L exceed the values of  AO s and A t  s by sin OH 7 or 7, 
respectively, where the angular  diffraction broadening 7 
is defined by 

7 = 0  + f l ' / k H s i n  O n . (27) 

Thus J '  and E r are also in this case given by (25) and 
(25), respectively; the only difference is in the pro- 
visions regarding Ae L and dO L. 

(C)  R o t a t i n g  crystal .  The crystal  rotates  about  the 
axis u, described by (18), and the time dependent  
expressions for g and v (19) are used in (21). If  a 
mosaic  crystal  is under consideration,  it must  be 
remembered  that  the distribution function U is defined 
in a coordinate  system rotat ing with the crystal .  The 
number  of  appropr ia te ly  oriented crystallites is 
therefore U(go,Vo) dg 0 dv 0. 

The selection of  the inner variables is again accom- 
plished by the three criteria and (21), remember ing that  
g and v are time dependent;  k and t can be selected so 

that  they satisfy the three criteria. As  to the third 
variable, g0 and v 0 are disqualified because U depends 
on them (criterion III).  Of  the four remaining angular  
variables,  e L or 0 L can be chosen only if either of  the 
following two inequalities holds (criterion II). 

Case  (I): 

(Ae L - Aes) /Sin  0 n > (zJO 1 + d00) sin ~ sin (0/cos ~' 

+ 7(1 + sin ~, sin (o/cos qt) (28) 

or case (II): 

AO L -- AO s > (Ae~ + Ato)  cos ~,/sin 0 n sin ~, sin (O 

+ 7(1 + cos ~/s in  ~, sin (O). (29) 

The inner variables are t, k and e L for case (I) and t, 
k and 0 L for case (II). 

The Jacobian  J '  and integrated reflected energy E r 
are now directly obtained f rom (21) and (12); the 
results are given in Table 1. 

If  both cos ~, and sin (O vanish, t cannot  be an inner 
variable. In this case the rotat ion axis is normal  to the 
reflecting plane, and the geometry  is that  of  a s ta t ionary  
crystal .  

(D)  P o w d e r  me thod .  For  a randomly  oriented station- 
ary powder,  the distribution function U(g ,v )  is cons- 
tant,  (22), and thus g and fl can be selected as inner 
variables without violating criterion (III). The third 
inner variable is again k. It is directly seen (equation 
21) that  this set satisfies the three criteria for any value 
of  the other variables. The resulting expressions for J '  
and E r are shown in Table 1. 

Method 
Polychromatic 

radiation 
(I- 1) Stationary 
(1-2) Rotating 

(1-3) Rotating 

(1-4) Powder 

Monochromatic 
radiation 

(I-5) Stationary 
(I-6) Rotating 

(l-7) Rotating 

(I-8) Powder 

Inner 
variables 

Table 1. I n t e g r a t e d  ref lected energy  E r f o r  var ious  m e t h o d s  

E r = (.~F 2 V/V~)J'D. 

(J')-J D Provisions 

k, O L, e L 2k~ sin z O n AOsAesAtio(k) 
t, k, el. 4kZu sin 2 0 u cos ~,w AesAOoAOlio(k) 

t,k, OL 

k ,  11, v 

0o, 0~, eL 
I, OL, e L 

t, Oo, O, 

OL, /2, V 

4k2u sin 3 0 u sin ~ sin ~pw 

8kZu sin 3 O n 

k3u sin 20u 
k3u sin 20 u cos qsw 

AOsAeodQ io( k ) 

AOoAO IAeoAe~At M nio( k )/ 4 n 

301. > AOs + 7; deL > des + 7. 

(Ae L - Aes)/sin OH > 
(AO o + AOt) sin ~t sin (0/cos 
+ 7(1 + sin tp sin ~,/cos qt). 

Ao, - ~os  > 
(Ae o + Ael) cos ~,/sin 0 n sin qs sin tp 
+ 7(1 + cos ~,/sin ~ sin ~0). 

None 

AesAti* 
AOsAesi* 

2k3u sin 20 u sin O n sin ~, sin em AeoAe~i ~ 

2k3u sin 20 n sin O n AOsAeoAe,AtMui~ / 4 zt 

AOo > 7; AO~ > 7, AeL > Aes + 7. 
(Act. - Aes)/sin On > 

(2AO s + fl'/2k H cos O n) sin ~' sin ~0/cos qJ 
+ 7(1 + sin ~' sin ~0/cos ~). 

2AO s > (Ae o + At I) cos ~,/sin ~, sin ¢ sin O H 
+ 7(1 + cos ~/sin qssin q~) 
+ #'/2k n cos O n. 
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II. Monochromatic radiation 

If the primary radiation is monochromatic,  the 
spectral intensity is sharply peaked about k , ,  and 
therefore (criterion III) the wavenumber k cannot serve 
as an inner variable. The range of A k / k  values is, 
however, small and we may assume that 

Ak sin 0 u < ff  

[otherwise the Ak /k  must be included in the angle ~, of 
(27)]. Denoting the angular density of the primary 
(monochromatic) intensity by i F, we have: 

i* = f io(k) dk. (30) 
Ak 

With this property, the selection of inner variables, 
evaluation of J ' ,  (24)through (21), and of E r, (12), pro- 
ceed in a manner analogous to the previous con- 
siderations. The results for the various techniques are 
collected in Table 1. 

Discussion 

Equations for the integrated reflected energy (or power) 
have been customarily expressed in terms of the 
incident intensity I o = i'~ AO o Ae o or the incident spectral 
intensity I '  (k) = io(k) AOo Aeo [or I '  (2) = i0(2) AOo Aeo]. 
This presupposes that the angular opening of the 
detecting device is always sufficiently large to collect 
the entire reflected power. However, this is not 
necessarily a condition for obtaining the integrated 
reflected energy (see column 'provisions' in Table 1). 
Furthermore, whilst a large detecting aperture is 
certainly present if photographic methods are em- 
ployed, this may not be so if counters and associated 
slit systems are used. Finally, the absolute reflected 
energy depends often on the size of the detecting 
aperture. For these reasons it seems to be better 
justified to express the integrated reflected energy in 

terms of the angular density of the primary intensity or 
of the primary spectral intensity, in conjunction with 
the appropriate angular openings, i.e. in terms of the 
factor D of Table 1. 

The Lorentz factor is defined (Laue, 1960, chapter 
17) as that factor which results on introducing the 
integration 

f G 2 d V  r 

into the intensity equation (dV r is the element of 
reciprocal space). Hence the Lorentz factor is, in the 
notation of this paper, equal to J ' V / V ~ ,  J 'ogV/V~ or 
J'  V/47rV~o for stationary or rotating crystal or (ran- 
domly oriented) powder methods respectively (the ex- 
pressions for J '  are given in Table 1). The definition 
implies that the integral of G 2 over the reciprocal 
volume can indeed be factored out, in the manner of 
(12), which in turn can be done provided that criterion 
(III) holds. It must be noted, however, that the 
equations are valid only if, in addition, the experi- 
mental set up is such that the corresponding provisions 
- last column of Table 1 - hold true. 

To facilitate comparison with equations appearing in 
the literature, Table 2 shows equations (I-l)  to (I-8) 
expressed in the 'conventional '  way, with the primary 
intensity I 0 (=i* AOoA%) for monochromatic radia- 
tion or the primary spectral intensity I '  (k) [=i0(k ) A00 
Ae o] for polychromatic radiation, and by assuming the 
angular opening of the detecting device to be sufficiently 
large. The Lorentz factor contained in each equation is 
placed in square brackets. For the stationary methods, 
equations are written for the reflected power Pr = 
EffAt .  The polarization factor is contained in the factor 
Je [see (1)]. The last column of Table 2 shows the pro- 
visions required for the corresponding equation to hold; 
these provisions are in addition to the condition of 
having large detector aperture. 

It is seen that the equations for the Laue, mono- 
chromatic rotation and monochromatic powder 
methods [equations (II-5), (II-6) and (I1-8)1 are 

Table 2. Integrated reflected energy E r or integrated reflected power Pr in conventional notation 

Method 
Polychromatic 

radiation 
(II- 1) Stationary 
(II-2) Rotating 
(II-3) Rotating 
(II-4) Powder 

Monochromatic 
radiation 

(II-5) Stationary 
(II-6) Rotating 
(II-7) Rotating 
0I-8) Powder 

Provisions 
(additional to large 
detecting aperture) 

P, =.~FZI'(k)[ V/2kZu sin 2 0 u V2I 
E,. =jeF2I'(k)d01/Og[ VI4kZu sin 20, cos ~V0~l 
E~ =.~FZl'(k),deffw[ V/4k2u sin 3 0 u sin ~ sin ~0V~] 
P, =jeF2I ' (k)M, A01Ae~[ V/32 nk~ sin 3 0 u V 2] 

None. 
Same as for (I-2), Table 1. 
Same as for (I-3), Table 1. 
None. 

Pr =Je Fz Io/AOo[ V/k3n sin 20, V 2] 
Er =a~F z lo/O9[ V/k~ sin 20 u cos ~,V0Zl 
Not applicable if detecting aperture is large 
Pr =Je F2 IoM, Ae,[ V/8nk3u sin 20 u sin 0 u V~] 

AOo> y. 
None. 

None. 
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identical to the customary expressions e.g. as given by 
Laue [1960, chapter 17, equations (18.19), (18.33)* 
and (18.30)]. 

Equations for integrated intensities for poly- 
chromatic rotation and powder methods have also been 
published (Buras & Gerward, 1975). These expressions 
do not, however, take into account the dependence on 
the aperture of the detecting device; it is for this reason 
that the Lorentz factors included in these equations 
differ from those of Table 2 - (I1-2) and (I1-4) - by a a t, a~ 
constant factor. 

For the case of a stationary crystal with mono- bH 
chromatic radiation, (I-5), no expression seems to have Er 
been derived so far. This method is indeed not normally F 
employed for intensity measurements; however, G2 
instances may occur where this equation is applicable, I 0, I 
e.g. for intensity evaluation of the kinematic image in I ' (k) ,  r ( 2 )  
topographs obtained with monochromatic radiation, io(k ) 

Likewise (I-3) and (I-7) of Table 1 have no counter- 
part in existing literature. Although the relevant iF 
geometry is hardly encountered, the existence of this 
possibility should not be ignored. Je 

With polychromatic radiation, different expressions j ,  j ,  
for the Lorentz factor are obtained for a given method, k 
depending on whether primary spectral intensity is L, Li  
expressed with respect to k or with respect to 2. (Indeed 
spectral intensity may be defined with respect to other L', L~ 
parameters which are functions of k.) The appropriate 
parameter should therefore be denoted, in these cases, MH 
in conjunction with the Lorentz factor. Nt 

The procedure for deriving the integrated energy p 
equation proposed in this paper can be adapted to other p 
instances, such as for perfect crystals, one- or two- r 
dimensional crystals, multiple reflections etc., once the s 0, s~ 
appropriate lattice factor or its equivalent has been 
derived, u U(a,v) 

Any such lattice factor must be characterized by the 
fact that it is non-vanishing in a limited region, the V 
region of reflection. The number of coordinates V0 
required to specify a point in this region will be equal to 
the number of inner variables required for the later inte- xt 
gration. After writing the initial equation for the 
reflected energy - in analogy to (6) - the range of x~, x 2, x 3 r, 
attainable values of all the variables appearing there are atj,a~ j 
established; these ranges are determined by the ex- fit 
perimental set up. The next step is the selection of the 
inner variables in accordance with the three criteria fl~, fl, 
formulated above [following (12)]. These criteria hold 
quite generally, and only if the required number of inner 
variables can be found without violating them will the Y 
experimental measurement result in an integrated 

* Equation (18.33) of Laue (1960, chapter 17) relates to rotation 
about an axis normal to the primary beam. In this equation the term 
cos )C appears instead of sin 20 u cos ~, of (II-6), where Z is the angle 
between s~ and the normal to both s o and u. Hence cos X = s~ (s o x 
u), which in turn can be seen, by means of (14) and (18), to be equal 
to sin 20, cos ~'. 

energy. Formally this quantity will be given by an 
equation analogous to (12), obtained by factoring out 
the integrated lattice factor and introducing the 
corresponding Jacobian. Integrating this equation over 
the outer variables will give the explicit expression for 
the integrated energy. 

(A), Ats 

to, 0o, el, 01 
At  o, Ae I 

List of symbols 

Elementary lattice translations of crystal 
in or near reflecting orientation. 
Reciprocal vector of reflecting plane. 
Reflected X-ray energy. 
Absolute value of structure factor. 
Lattice factor. 
Primary and scattered intensity. 
Spectral intensity with respect to k, 2. 
Spectral intensity with respect to k per 
unit solid angle. 
Intensity per unit solid angle. 
The classical electron radius times the 
polarization factor. 
Jacobian [(13) and (14)]. 
Wavenumber. 
Diffraction vector and its components 
(equation 7). 
Modified diffraction vector and compo- 
nents (L' .  a t = L. a~). 
Multiplicity factor for powder method. 
Number of unit cells in direction of a t . 
Polarization factor. 
Reflected X-ray power. 
Unit vectors in directions of primary and 
scattered beam. 
Axis of crystal rotation. 
Orientation distribution function of 
crystallites. 
Irradiated crystalline volume. 
Volume of unit cell. 
(i = 1 to 8) Notation for integration 
variables. 
Notation for inner variables. 
=L.a~ 7r. 
( j  = 1, 2, 3). Components of a t, a[. 
Range of values Y~ resulting in non- 
vanishing G 2. 
Range of values L[ resulting in non- 
vanishing G 2 (equation 23). 
Angular diffraction broadening (equation 
27). 
Matrix, components of matrix describing 
misorientation of crystallites (equation 
17). 
Angles describing directions of s o and s~. 
Angular opening of primary beam and 
detecting device in the direction normal 
to the plane containing s o and s~. 
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LI~,. (,%) 
~,(~) 

LI0oA0 ~ 

A0, (A0s) 
0,.(0~) 

/~, v, r 

The larger (the smaller) of de 0 and Ae~. 
The angle e o or e I associated with 
AeL(Aes). 
Bragg angle corresponding to bit and 
wavenumber k H. 
Angular opening of primary beam and 
detecting device in the plane containing 
s o and s~. 
The larger (the smaller) of dO o and d0~. 
The angle ~o or 0~ associated with 
AOL(A0s). 
Angles defining misorientation of crystal- 
lite. 
Mosaic spread. 

~o, q/ 

O9 

12 o, f21 

Angles defining direction of the axis of 
rotation (equation 18). 
Angular velocity of rotating crystal. 
Solid angular opening of primary beam 
and detecting device (~2 o = AO o Ae o, ~ = 
AO~ de~). 
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A b s t r a c t  

An examination of the nearest non-bonded interatomic 
distances found in crystals shows that where the two 
atoms are each covalently bound to only one other 
atom they exhibit non-spherical effective shapes. Such 
atoms behave as if flattened at their poles. Despite the 
large number of crystal structures now known in detail, 
various factors can militate against discovering effec- 
tive atomic shapes. Possible causes of flattening are 
briefly discussed. 

I n t r o d u c t i o n  

In his review of van der Waals radii, Bondi (1964, 
p. 442) states ' . . .  all atoms have been treated as spheres 
and sphere segments, although it is well known that 
many are more nearly pear-shaped'. Bondi cites no 
references to this 'well known' fact and it is not 
absolutely clear what is implied by 'pear-shaped'. How- 
ever, we believe there is now sufficient structural 
evidence, albeit not as extensive as we might hope, 
indicating that, for singly bound atoms at least, 
effective atomic shapes in crystals do deviate from 
spherical. In their more recent reviews of van der Waals 
radii, Zefirov & Zorkii (1976) have found considerable 
variabilities for certain atoms and this might in some 
cases be due to non-sphericity. 

0567-7394/79/040641-05501.00 

Currently, much effort is being devoted to formulat- 
ing atom-atom potential energies which, it is hoped, 
will explain the packing and non-bonded interatomic 
distances found in crystals. Such an approach is clearly 
more fundamental, based as it is on the potential energy 
approximation to the free energy, instead of on the geo- 
metric concept of hard spheres. 

Although the potential energy between two 
molecules must have a complicated and specific 
dependence on the six molecule orientation defining 
variables, the a tom-atom approximation has led to 
sufficient success for it to be regarded as a useful 
empirical approximation to this energy. In virtually all 
cases the atom-atom potential is regarded as being 
spherical about the nucleus, i.e. it has the same 
functional dependence on distance irrespective of the 
mutual orientation of the molecules. However, the 
potential energy between two non-bonded atoms in 
different molecules can be regarded as composed of an 
attractive (dispersive) and a repulsive term. To regard 
both as spherical about the nuclei is to ignore the non- 
spherically disposed electrons. Thus it is not whether 
atoms in molecules behave as spheres in their non- 
bonding interactions with other atoms but to what 
extent they are non-spherical.* 

* Bondi and others use 'anisometric' which should probably be 
avoided in view of 'isometric' being commonly used for the cubic 
system. 'Aspherical' is a possible alternative but is usually restricted 
to slight deviations from spherical. 
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